Leecode 1201. Ugly Number III
1201. Ugly Number III
题目
Write a program to find the n
-th ugly number.
Ugly numbers are positive integers which are divisible by a
or b
or c
.
Example 1:
Input: n = 3, a = 2, b = 3, c = 5
Output: 4
Explanation: The ugly numbers are 2, 3, 4, 5, 6, 8, 9, 10... The 3rd is 4.
Example 2:
Input: n = 4, a = 2, b = 3, c = 4
Output: 6
Explanation: The ugly numbers are 2, 3, 4, 6, 8, 9, 10, 12... The 4th is 6.
Example 3:
Input: n = 5, a = 2, b = 11, c = 13
Output: 10
Explanation: The ugly numbers are 2, 4, 6, 8, 10, 11, 12, 13... The 5th is 10.
Example 4:
Input: n = 1000000000, a = 2, b = 217983653, c = 336916467
Output: 1999999984
Constraints:
1 <= n, a, b, c <= 10^9
1 <= a * b * c <= 10^18
- It's guaranteed that the result will be in range
[1, 2 * 10^9]
题目大意
请你帮忙设计一个程序,用来找出第 n 个丑数。丑数是可以被 a 或 b 或 c 整除的 正整数。
提示:
- 1 <= n, a, b, c <= 10^9
- 1 <= a * b * c <= 10^18
- 本题结果在 [1, 2 * 10^9] 的范围内
解题思路
- 问题转化:将 "找第 N 个丑数" 转化为 "对于某个数 x,判断 <=x 的丑数是否有至少 N 个",然后通过二分查找找到最小的 such x。
- 容斥原理:计算 <=x 的丑数数量时,使用容斥原理:
- 能被 a、b、c 中至少一个整除的数的个数 =
(能被 a 整除的数) + (能被 b 整除的数) + (能被 c 整除的数) -
(能被 a 和 b 同时整除的数) - (能被 a 和 c 同时整除的数) - (能被 b 和 c 同时整除的数) +
(能被 a、b、c 同时整除的数)
- 能被 a、b、c 中至少一个整除的数的个数 =
- 最小公倍数:判断一个数能否被两个数同时整除,等价于判断能否被它们的最小公倍数整除,因此需要计算 lcm (a,b)、lcm (a,c)、lcm (b,c) 和 lcm (a,b,c)。
- 二分查找:在合理的范围内进行二分查找,找到满足条件的最小 x。
1 | class Solution { |
All articles on this blog are licensed under CC BY-NC-SA 4.0 unless otherwise stated.